Programming and Simulating Robots with Microsoft Robotics Studio

Ben Axelrod

http://www.benaxelrod.com

http://www.corobot.net
Agenda

• What is it?
 – In a nutshell
 – “Supported” hardware
 – Simulator
 – Architecture

• Mobile Manipulator example

• Look at some code

• Running MSRS

• Downsides

• Demo (if time)
In a Nutshell…

• A distributed asynchronous service-oriented architecture (for robotics)
• CCR (Concurrency and Coordination Runtime)
 – Message oriented programming model
• DSS (Decentralized System Services)
 – service oriented application model
• Built on .NET
• A physics based simulator
• A visual programming language
Implications of .NET

- .NET is Microsoft’s new development environment
- Choice of languages: C#, VB, C++, Python…
- Requires: Windows XP, CE, Vista
- Most robots will be “tethered”
“Supported” Hardware

• Included with MSRS:
 – Lego RCX + NXT
 – Parallax BOE Bot
 – fischertechnik
 – iRobot Create
 – KHR-1
 – MobileRobots Pioneer P3DX

• Third party:
 – CoroWare CoroBot
 – Parallax Scribbler
 – Segway RMP
 – Robotics Connection Traxster + Stinger
 – Princeton PAVE UGC car

• Sensors:
 – SICK LRF
 – Webcams
 – IP Webcams
 – Phidgets
 – MS GPS
Simulator
Simulator

198.79 fps (800x600), Format.XBGR8888 Format.D24X8
Hardware (pure hw vp): NVIDIA GeForce 7600 GT
Camera(x,y,z): 2.082108, 1.905209, 0.3057435
Exposure slopes: 0

Controls (F1 to hide):
Toggle physics scene: F2
Toggle camera as rigid body: F3
Toggle gravity: G
Expose up: Z Expose down: X
Pause simulation (only pauses rendering and physics, not service runtime): P
Camera control: Right mouse button for view and A,W,S,D movement
What is a service

• Separate state and behavior
Message transport
CCR

- Coordinating asynchronous tasks
CCR

- Coordinating asynchronous tasks
CCR

- Coordinating asynchronous tasks
Example – mobile manipulation

- GT Class Project
- KUKA KR-5 sixx R650
- Schunk PG-70 parallel gripper
- Segway RMP 200
- SICK LMS 291
- Objective: Serve coffee
Example – mobile manipulation

• MSRS used as ‘glue’ for robot system
Example – mobile manipulation
Standard Hierarchy
Code Example

• Custom line sensor

• We want to build a MSRS service that:
 – Has some simple state
 – Supports subscriptions
 – Can be calibrated with a special message
public sealed class Contract
{
 public const string Identifier = "http://schemas.tempuri.org/2008/03/linesensor.html";
}

[DataContract()]
public class LineSensorState
{
 [DataMember]
 public bool LineInView;

 [DataMember]
 public Position LineLocation;

 [DataMember]
 public DateTime TimeStamp;
}

[DataContract()]
public enum Position
{
 Left,
 Center,
 Right
}
Code

- Main port and message definitions

```java
[ServicePort()]
public class LineSensorOperations : PortSet<
    DsspDefaultLookup,
    DsspDefaultDrop,
    Get,
    Replace,
    Subscribe,
    Calibrate
{
}

public class Get : Get<GetRequestDataType, PortSet<LineSensorState, Fault>>
{
}

public class Replace : Replace<LineSensorState, PortSet<DefaultReplaceResponseType, Fault>>
{
}

public class Subscribe : Subscribe<SubscribeRequestDataType, PortSet<SubscribeResponseType, Fault>>
{
}

public class Calibrate : Update<CalibrateRequestDataType, PortSet<DefaultUpdateResponseType, Fault>>
{
}

[DataContract()]
public class CalibrateRequestDataType
{
}
```
Code

• Class

```csharp
[DisplayName("LineSensor")]
[Description("The LineSensor Service")]
[Contract(Contract.Identifier)]
public class LineSensorService : DsspServiceBase
{
    private LineSensorState _state = new LineSensorState();

    [ServicePort("/LineSensor", AllowMultipleInstances=false)]
    private LineSensorOperations _mainPort = new LineSensorOperations();

    [Partner("SubMgr",
        Contract = submgr.Contract.Identifier,
        CreationPolicy = PartnerCreationPolicy.CreateAlways)]
    private submgr.SubscriptionManagerPort _submgrPort = new submgr.SubscriptionManagerPort();

    public LineSensorService(DsspServiceCreationPort creationPort) : base(creationPort) {
    }

    protected override void Start()
    {
        base.Start();

        if (_state == null)
        {
            _state = new LineSensorState();
            _state.LineInView = false;
            _state.TimeStamp = DateTime.Now;
        }
        //do custom setup
    }
```
Code

• Message handlers part 1

```csharp
[ServiceHandler(ServiceHandlerBehavior.Concurrent)]
public virtual IEnumerable<ITask> GetHandler(Get get)
{
    get.ResponsePort.Post(_state);
    yield break;
}

[ServiceHandler(ServiceHandlerBehavior.Exclusive)]
public virtual IEnumerable<ITask> ReplaceHandler(Replace msg)
{
    _state = msg.Body;

    base.SendNotification<Replace>(_submgrPort, _state);

    msg.ResponsePort.Post(DefaultReplaceResponseType.Instance);
    yield break;
}
```
Code

- Message handlers part 2

```csharp
[ServiceHandler(ServiceHandlerBehavior.Concurrent)]
public virtual IEnumerable<ITask> SubscribeHandler(Subscribe subscribe)
{
    yield return Arbiter.Choice(
        SubscribeHelper(_submgrPort, subscribe.Body, subscribe.ResponsePort),
        delegate(SuccessResult success)
        {
            base.SendNotification<Replace>(_submgrPort, subscribe.Body.Subscriber, _state);
        },
        delegate(Exception e)
        {
            LogError(null, "Subscribe failed", e);
        });

    yield break;
}
```
void HandleSensorCallback(bool leftSensor, bool rightSensor)
{
 LineSensorState newState = new LineSensorState();
 newState.TimeStamp = DateTime.Now;

 //do sensor logic
 newState.LineInView = leftSensor | rightSensor;
 if (leftSensor && rightSensor) newState.LineLocation = Position.Center;
 else if (leftSensor) newState.LineLocation = Position.Left;
 else if (rightSensor) newState.LineLocation = Position.Right;

 Replace rmsg = new Replace();
 rmsg.Body = newState;
 _mainPort.Post(rmsg);
}
Usage

• Manifest

```xml
<?xml version="1.0" ?>
<Manifest
    xmlns="http://schemas.microsoft.com/xw/2004/10/manifest.html"
    <CreateServiceList>
        <ServiceRecordType>
        </ServiceRecordType>
    </CreateServiceList>
</Manifest>
```
Usage

- Contract directory
Usage

- XML state

```xml
- <s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope"
  - <s:Header>
    <wsa:To>http://[0000:0000:0000:0000:0000:0000:0000:0001]:1030/</wsa:To>
  - <d:Timestamp>
    <d:Value>2008-03-25T23:49:49.52475-04:00</d:Value>
  </d:Timestamp>
  <wsa:RelatesTo>uuid:15fb66ee-8356-41f0-9221-bf5bc4cc621</wsa:RelatesTo>
</s:Header>
- <s:Body>
  - <LineSensorState xmlns="http://schemas.tempuri.org/2008/03/linesensor.html">
    <LineInView>false</LineInView>
    <LineLocation>Center</LineLocation>
    <TimeStamp>2008-03-25T23:49:26.556-04:00</TimeStamp>
  </LineSensorState>
</s:Body>
</s:Envelope>
```
Synchronous Tasks – Bad

protected override void Start()
{
 base.Start();
 DrawSquare();
}

void DrawSquare()
{
 double ONE_METER = 1.0;
 double FULL_POWER = 1.0;
 double QUARTER_TURN = 90.0;

 System.Threading.Thread.Sleep(1000);

 for (int i = 0; i < 4; i++)
 {
 _drivePort.DriveDistance(new DriveDistanceRequest(ONE_METER, FULL_POWER));
 _drivePort.RotateDegrees(new RotateDegreesRequest(QUARTER_TURN, FULL_POWER));
 }
}
protected override void Start()
{
 base.Start();

 SpawnIterator(DrawSquare);
}

IEnumerator<ITask> DrawSquare()
{
 double ONE_METER = 1.0;
 double FULL_POWER = 1.0;
 double QUARTER_TURN = 90.0;

 yield return Arbiter.Receive(false, TimeoutPort(2000), delegate(DateTime t) { });

 for (int i = 0; i < 4; i++)
 {
 yield return Arbiter.Receive<DefaultUpdateResponseType>(false,
 _drivePort.DriveDistance(new DriveDistanceRequest(ONE_METER, FULL_POWER)),
 delegate(DefaultUpdateResponseType rsp)
 {
 });

 yield return Arbiter.Receive<DefaultUpdateResponseType>(false,
 _drivePort.RotateDegrees(new RotateDegreesRequest(QUARTER_TURN, FULL_POWER)),
 delegate(DefaultUpdateResponseType rsp)
 {
 });
 }

 yield break;
}
Why I Like It

• .NET is great
• CCR nice for asynchronous code
 – MySpace uses it
• It’s Microsoft
 – MS on a robot is laughable
 • Kuka uses it
 – This is the direction robotics is going
 • One home computer controlling all robots
 • Everything now is off-board computation
Downsides

- Steep learning curve
- Lots of boiler-plate code
- Can start services in many ways
 - Partnerships break down with large numbers
- Requires a fairly fast computer
 - I want to put code on a Gumstix
- Can be difficult to debug sometimes
- No contract inheritance
- Users must faithfully implement contracts
- Lots of pre-existing robotics code for Linux
- No distinction between “in” and “out” messages
Competitors

<table>
<thead>
<tr>
<th>Platform</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLARAty (NASA JPL)</td>
<td>Platform</td>
</tr>
<tr>
<td>Commercial or Free</td>
<td></td>
</tr>
<tr>
<td>Microsoft Robotics Studio</td>
<td>Platform</td>
</tr>
<tr>
<td>Commercial or Free</td>
<td></td>
</tr>
<tr>
<td>iRobot AWARE</td>
<td>Platform</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
</tr>
<tr>
<td>OROCOS</td>
<td>Machine and robot control libraries</td>
</tr>
<tr>
<td>Open source & Free</td>
<td></td>
</tr>
<tr>
<td>Skilligent</td>
<td>Robot learning add-on</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
</tr>
<tr>
<td>URBI</td>
<td>Platform</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
</tr>
<tr>
<td>Webots</td>
<td>Simulation environment</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
</tr>
<tr>
<td>Player, Stage, Gazebo</td>
<td>Platform</td>
</tr>
<tr>
<td>Open Source & Free</td>
<td></td>
</tr>
<tr>
<td>OpenJAUS</td>
<td>Platform</td>
</tr>
<tr>
<td>Open source</td>
<td></td>
</tr>
<tr>
<td>Saphira (Mobile Robotics)</td>
<td></td>
</tr>
<tr>
<td>Commercial or Free</td>
<td></td>
</tr>
<tr>
<td>ORCA (Toshiba)</td>
<td></td>
</tr>
<tr>
<td>DROS</td>
<td></td>
</tr>
<tr>
<td>Open Source & Free</td>
<td></td>
</tr>
</tbody>
</table>

http://www.linuxdevices.com/articles/AT5739475111.html
Resources

• Microsoft Robotics
 – http://www.microsoft.com/robotics
 – The team Blog, product downloads and community-support newsgroup are linked from this main page

• CoroWare, Inc.
 – Corporate: http://www.coroware.com
 – ClassPack demo: http://support.coroware.com/forums
• RoboChamps: http://robochamps.com